
NUMERICAL ANALYSIS OF THE EFFECT
OF VISCOSITY ON THE VORTEX DYNAMICS
IN LAMINAR SEPARATED FLOW PAST
A DIMPLE ON A PLANE WITH ALLOWANCE
FOR ITS ASYMMETRY

S. A. Isaev, A. I. Leont’ev,
P. A. Baranov, Kh. T. Metov, and
A. E. Usachov

UDC 532.517.2

Based on numerical solution of the Navier−Stokes three-dimensional stationary equations by a factor-
ized finite-volume method, the influence of physical viscosity on self-organizing jet-vortex structures
in a dimple on a plane immersed in a laminar flow is analyzed with allowance for the asymmetry of
the dimple shape.

1. The generation of self-organizing large-scale vortex structures in flow past a spherical dimple on
an exposed surface has long attracted the attention of experimentalists [1−5] and, primarily, in connection
with the solution of the fundamental problem of hydrodynamics and thermophysics and, in particular, of the
tasks of enhancing heat exchange in the elements of propulsion systems. However, up to the present time the
works carried out have lacked system to a certain extent because of the limited possibilities of physical ex-
periments, especially as concerns the evaluation of the effect of geometrical and operational factors. Thus, for
example, the difficulties in conducting investigations in the region of moderate Reynolds numbers that corre-
sponds to a laminar mode of flow are well known. This is why great hopes are pinned on the development
of the methods of numerical simulation of three-dimensional flow past a dimple on an exposed wall; they
make it possible to analyze in detail the vortex structure of the flow and to obtain the dependences of the
local and integral characteristics on the governing parameters [6−14].

The genesis of this trend is closely associated with the evolution of computational complexes used to
simulate a three-dimensional flow around objects of curvilinear geometry, and it is characterized by additional
complexities gradually introduced into the formulation of the problems considered. The common feature of all
the complexes is the application of the concept of splitting as to physical processes and of the finite-volume
method of approximation of starting Navier−Stokes equations.

In [6, 7], the results of computer visualization of a vortical laminar flow within the neighborhood of
the dimple are systematized. The results included also the cases of nonstationary development of the process
and flow blocking in a thin layer adjacent to the wall. All of the calculations used the approach which was
based on oblique Cartesian grids adapted to a curvilinear wall exposed to a flow. Unfortunately, the authors
failed to attain a high resolution of the details of separation flow because of the small (of the order of several
thousands) number of computational meshes within the dimple.

The solutions were substantially improved by using a cylindrical grid to map the neighborhood of a
spherical dimple [8−11]. The number of computational cells in the region of the laminar separation flow con-
sidered was increased here by an order of magnitude and attained several thousands. As a result, the self-or-
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ganizing large-scale flow-forming structures in the dimple were analyzed in detail; they include swirled jets
of tornado type and vortex rings. It is also discovered that the deformation of the dimple shape in a trans-
verse direction leads to rearrangement of the flow pattern from a symmetrical one with two vortical cells in
the dimple to an asymmetrical one with predominant liquid transfer across the main flow; this rearrangement
is accompanied by enhancement of heat transfer from the wall.

And, finally, the application of a computational strategy based on multiblock intersecting grids made
it possible to reach a new level of simulation of flow past a deep dimple [12, 13]; the level combines correct
mapping of differently scaled structural elements of a three-dimensional flow with allowance for the effect of
turbulence, natural convection, and jamming of flow by channel walls. 

It should be noted that the first attempts made abroad to calculate this kind of flow (see, e.g., [14])
are still of limited methodical character and are also distinguished by a simplified formulation of the problem
(in particular, in the work cited the effect of an external stream on the flow in a spherical dimple is replaced
by motion of the upper boundary).

The present work is a continuation of numerical investigation [13] and is aimed at a detailed analysis
of laminar incompressible viscous liquid flow past a dimple on a plane, with particular attention paid to the
effect of the asymmetry in the dimple shape on the deformation of the vortical flow. Just as in the above-
mentioned work, the three-dimensional jet-vortex structures were identified by the method of computer visu-
alization of flow by observing the tracks of labeled liquid particles. As a base geometry, a spherical dimple
(of depth 0.22) with rounded edges (of radius 0.1) is considered, for which a regime of stable flow with the
formation of an extended separation zone is realized.

2. In numerical simulation of laminar flow in the vicinity of a curvilinear relief an approach is being
developed which was tested in solving two-dimensional flows around bodies with vortex cells and which is
based on the use of multiblock grids [12]. The constructed factorized algorithm is based on the implicit fi-
nite-volume method of solving the Navier−Stokes equations within the framework of the concept that the
computational domain can be decomposed and that in oblique grids of H- and O-type with overlapping can
be generated the isolated substantially differently scaled subregions.  The system of starting equations is writ-
ten in a divergent form for increments of dependent variables that involve, in particular, Cartesian velocity
components. In approximation of source terms, the convective fluxes are determined with the aid of a one-di-
mensional countercurrent scheme with quadratic interpolation. The details of the implicit finite-volume com-
putational procedure based on the concept of splitting according to physical processes are given in [6, 7].

Within the framework of the multiblock grid strategy the values between intersecting grids are carried
over with the aid of nonconservative linear interpolation. The volume of the mesh of the selected structured
grid is divided into six pyramids, whose base is one of the faces and the whose vertex is at the center of the
mesh. Each pyramid is divided, in turn, into eight tetrahedrons. The intergrid interpolation determines the
relevance of the point selected, at which one has to determine the set of parameters, to one of the tetrahe-
drons that form the mesh; for this tetrahedron, linear interpolation is constructed from the known values at
vertices. Thus, for the tetrahedron with the vertices P1, P2, P3, and P4, the value of the function F at an

arbitrary point P will be written in the form FP = Σ
i=1

4

 Fihi, where Fi = F(Pi) is the value of the function at the

ith vertex of the tetrahedron, while the coefficients of the interpolation dependence are defined by the expres-
sion hi = vol (P, Pm, Pn, Ph)/vol (P1, P2, P3, P4), where m, n, and k are the numbers of the successive verti-
ces of the tetrahedron (1, 2, 3; 2, 3, 4; 3, 4, 1; 4, 1, 2) and i is the number-complementary vertex (4, 1, 2,
and 3, respectively). Here vol (P1, P2, P3, P4) is the volume of the tetrahedron with the indicated vertices.

3. To solve the problem of laminar flow past a deep dimple and more accurately resolve differently
scaled structural elements of flow such as a shear layer and a zone of back flow, it seems worthwhile to
isolate, around the dimple, the near-wall region of annular cylindrical shape of outer radius 1 (all the linear
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dimensions are related to the diameter of the dimple), inner radius 0.1, and height 0.175. The region consid-
ered is divided by an oblique curvilinear grid matched with the exposed surface. Sixty uniformly distributed
meshes are selected over the circumference and from 30 to 45 meshes in the vertical direction with the con-
centration of nodes near the wall (the minimum near-wall step varied from 0.0008 to 0.005). From 30 to 45
meshes are prescribed in the radial direction, with smaller and smaller step size to the boundary of the dimple
(the minimum step is 0.006).

The considered subregion of the dimple is overlaid by a large-scale rectangular region whose base
partially coincides with the plane wall exposed to the flow (Fig. 1a). The origin of the Cartesian coordinate
system coincides with the projection onto the plane of the dimple center. The length of the region is 17, the
height 5, and the width 10. The indicated region is divided by the Cartesian grid having 55 × 35 × 40
meshes. The nodes of the grid are concentrated in the vicinity of the dimple (the minimum step in the longi-
tudinal and transverse directions is 0.1) and near the wall (the near-wall step varies from 0.001 to 0.005).

To resolve the wall flow in the vicinity of the axis of the cylindrical subregion in the best way a
"patch" intersecting this subregion is introduced (Fig. 1b) that has the shape of a curvilinear parallelepiped.
Within the limits of this patch, a grid is constructed with uniform distribution of nodes in the longitudinal
and transverse directions. The steps of this grid agree with the near-boundary step of the grid of the neigh-
boring cylindrical region. The disposition of the nodes in the vertical direction is also kept in coordination.

The flow past two types of dimples was analyzed: of spherical shape and of asymmetric geometry,
which is a combination of a spherical and an elliptic one (with the ratio of half-axes 0.3 and 0.4 to 0.5) (Fig.
1c). The asymmetry parameter ε changes here from 0.1 to 0.2.

Fig. 1. Computational domain (a), a fragment of a multiblock grid (b) to
calculate flow past a spherical dimple of depth 0.22 and curvature radius
0.1, and also the contour of an asymmetric dimple (spherical-elliptic)
with the ratio of semiaxes 0.3 to 0.5, and cross section of the dimple at
middle (c).
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On the inlet boundary of the computational domain (Fig. 1), the velocity profile corresponding to the
Pohlhausen profile for a laminar boundary layer is prescribed, with the thickness equal to the depth of the
dimple is prescribed. On the outlet boundaries mild boundary conditions are set (the conditions of the con-
tinuation of solution from the inner points to the boundary of the region). No-slip conditions hold on the
wall. The free stream velocity outside the boundary layer and the dimple diameter, which is taken to be equal
to the length of transition from the curved portion to the plane, are taken as the parameters of nondimension-
alization.

The Reynolds number varies from 102 to 2.5⋅103. The calculations were carried out on several mul-
tiblock grids that contained meshes of the order of (1−2.5)⋅105 in the case of nearly coinciding thicknesses of
the boundary layer (the range of variation is 0.175−0.22) and a different number of meshes within the limits
of the spherical dimple and also when the near-wall step of the grids changed.

4. Some of the results obtained are given in Figs. 2−4 and in Table 1. As in [13], attention is espe-
cially paid to computer identification of self-organizing jet-vortex structures that play a dominant role in the
physical mechanism of vortical (tornado) intensification of heat and mass exchange processes in flow past
reliefs with cavities. Comparison of predicted results with available experimental data is made [1].

Methodical numerical experiments carried out to evaluate the effect of the prescribed number of
meshes on the results of calculation (Fig. 2a), especially those disposed within the limits of a spherical dim-
ple, demonstrate weak dependence of the results on grid factors. This indicates the adequacy of the computa-
tional complex for simulation of spatial laminar separation flows.

The intensification of a recurrent flow in a dimple with increase in Re is first of all characterized by
monotonous increase in the absolute value of the minimum longitudinal velocity component umin. At Re =

Fig. 2. Dependence of minimum values of the longitudinal (1) and trans-
verse (2) velocity on the Re number (a) for computational grids with dif-
ferent density of meshes and evolution of the patherns of spreading of
liquid over the surface of a deep dimple with increase in the Reynolds
number: b) Re = 4⋅102; c) 7⋅102; d) 103; e) 1.5⋅103; f) 2.5⋅103; g) 2.5⋅103;
(experiment [1]). Grid contains 137,700 meshes in the computational do-
main and 51,300 meshes within the dimple; B − 94,500 and 15,000; C
− 220,400 and 103,800; D − 179,232 and 91,232, respectively.
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102 there is virtually no separation flow in a deep dimple, and at Re = 2.5⋅103 the maximum velocity of the
return flow is equal to 9% of the external flow velocity.

As Re increases, the minimum value of the transverse velocity component wmin that characterizes the
degree of the capturing of liquid by the dimple from the surrounding space (vacuum cleaner effect) behaves
abnormally. At low values of Re the absolute value of wmin increases, though to a lesser degree than umin,
and then at Re of the order of 103 it begins to decrease, attaining the local extremum at Re ≈ 1050. Thereaf-
ter, as Re increases wmin continues to increase, confirming the tendency toward intensification of the separa-
tion flow in the dimple. When Re = 2.5⋅103, the quantity wmin takes the value −0.052. It should be noted that
at low (of the order of 102) Reynolds numbers the quantity wmin in absolute value comes to 2.5% of the
external flow velocity.

It is seen from Fig. 2b-d that as the Re number increases, the evolution of the pictures of liquid
spreading over the surface of a deep spherical dimple, with the radius of curvature of the sharp edge equal to
0.1, demonstrates transition from a quasi-two-dimensional character of separation flow at low (102−4⋅102)
Reynolds numbers to a flow regime with the formation of special focus-type points (Fig. 2c, d). As Re in-
creases, the dimensions of the separation region of flow become larger, and the separation line comes nearer
to the front boundary of the dimple shown in Fig. 2 by the dashed line. Here, it is important to emphasize that
at low Re the motion of liquid along the line of flow attachment is directed from the longitudinal plane of
symmetry of the dimple to its periphery and vice versa at moderate and high (above 7⋅102) Reynolds numbers.

It is of interest to analyze the structure of wall flow developed on the side slopes of the dimple. At
low and moderate Re numbers (up to 103) specific windows are formed, through which the liquid, if trapped,
escapes from the dimple. However, while at low values of Re the flow at the periphery of the dimple turns
smoothly, at higher values of Re the change in the direction of liquid motion along the line of flow attach-
ment first determines the local and then global (in the scale of the dimple) swirl of the flow. With increase

Fig. 3. Pictures of vortex structures in laminar flow past a symmetric (a, b,
c) and asymmetric (d, e, f) dimple at Re = 7⋅102 (a, d) and 1.5⋅103 (c, f).
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in the Reynolds numbers, the flow area of the windows is reduced till the separation zone is closed at Re
≈ 1.5⋅103. It should be noted that the closure of the separation zone corresponds to the extremum of the func-
tion wmin(Re). Thereafter, the separation region opens to meet the incoming flow, as a result of which the
small jets of the stream directly enter the dimple through the side windows, increasing the circulation of vor-
tex flow in it.

On the whole, the distinct three-dimensional effects typical of flow past a deep dimple begin to mani-
fest themselves already at moderate Reynolds numbers, when the separation flow loses its quasi-two-dimen-
sional nature in the central part of the dimple and the sinks on its side walls are being formed. At large
Reynolds numbers (of the order of 2.5⋅103), two large-scale vortical cells are formed that are located symmet-
rically relative to the median longitudinal plane of the flow. Rotational motion of liquid relative to the foci
is developed in them. With increase in Re, a tendency toward the motion of the indicated points to the center
of the dimple is observed. The calculated picture of the spread of liquid in the wall layer of the dimple
correlates satisfactorily with the experimentally observed stationary flow in a dimple at nearly the same
Reynolds number [1] (Fig. 2j).

The visualization of stream-forming structural elements in a laminar separation flow past a dimple
reveals (see Fig. 3) that the rearrangement of the vortex structure in transition from moderate to high
Reynolds numbers is associated with the formation of jet-like tornado-type flows emerging from the neigh-

Fig. 4. Evolution of the secondary flow in the transverse median plane of
an asymmetric dimple at the half-axes ratio 0.3 and 0.5 with increase in
the Reynolds number: a) Re = 7⋅102; b) 103; c) 1.5⋅103. The dashed lines
show isobars (the pressure p is related to doubled velocity head): 1) p =
0; 2) 0.002; 3) 0.004; 4) 0.006.
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borhood of the foci on the surface of the dimple. At Re = 7⋅102 the indicated peripheral flows are still very
weak, and on the whole jamming of the closed vortex flow in the central region of the dimple is observed,
with the enclosing of it by the near-wall layers of the swirled flow. The liquid from the center of the dimple
is carried away to the periphery and is expelled from it, in particular, through the side windows.

When Re > 103, the liquid from the peripheral side regions moves to the center and subsequently is
swept out of the symmetry plane. As already noted in [11], the axes of the swirled jets at high Re numbers
are straight lines that connect the foci on the walls of the dimple with the sink point in the middle longitu-
dinal plane around which rotational motion of liquid particles originates in the plane of symmetry. The tra-
jectories of liquid particles that enter into the dimple from the outer flow are coiled round the axes of the
jets. The particles from the peripheral portion of the dimple are transferred along the small radii. As seen
from Fig. 3b, the liquid particles that belong to the external flow and that enter into the central part of the
dimple are entrained into the core of the swirled jet flow near its base. Consequently, the liquid from the
central part of the dimple is transported to its periphery along the trajectories with decrease in the radius of
swirling.

For an asymmetric dimple produced by deformation of the side wall so that, when viewed from
above, its edge has an elliptic shape, the flow acquires an asymmetric character. As seen from Fig. 3d-f, a
predominant transfer of liquid from the hemispherical part of the dimple into its deformed part is observed.
However, this is not caused by a substantial increase in convective transfer in the hemispherical portion; on
the contrary, the motion of liquid in this part of the dimple is similar to flow past a spherical dimple. Rather,
one should speak about the weakening of vortical flow in the deformed part of the dimple. As shown in [13],
this tendency in a turbulent regime leads to cardinal rearrangement of the regime of flow in the dimple due
to the transition from the structure with two vortex cells to a monovortex tornado-like structure. As a result,
there is not only intensification of the secondary flow in the asymmetric dimple but also a considerable en-
hancement in heat exchange of the surface element having such a dimple.

In laminar flow past an asymmetric spherically elliptic dimple, just as in the case of a deformed
round dimple with a variable curvature radius [8, 10, 11], an interference of swirled jet flows of different
intensity is noted within its bounds. Figure 3d, e distinctly shows the interface between the interacting flows
that block the vortex cell on the deformed side of the dimple.

It is of interest to analyze the evolution of the pattern of secondary flow in the middle cross section
of the asymmetric (ε = 0.2) dimple on increase in the Reynolds number from 7⋅102 to 1.5⋅103 (Fig. 4).

The common features of the pattens given are the outflow of liquid from the dimple on its sides and
ejection of liquid from the external flow into the dimple. The entrainment of liquid from the side of the
spherical part turns out to be predominant. It forms a strong transverse flow in the dimple in the direction of
its deformed part; the flow becomes stronger as Re increases. At Re = 7⋅102 this flow cannot withstand the
zone of higher pressure, ascends, and, interacting with the descending external flow that comes from the
right, it spreads in the longitudinal plane on the interface between the streams and forms a high-pressure
region (Fig. 4a), When Re ≥ 103, two spiral-like vortical rings are formed as a result of interaction of the
ascending and descending streams. As the Reynolds number increases, the zone occupied by the vortices be-

TABLE 1. Hydrodynamic Resistance and Its Components of the Circular (radius 1) Element of the Wall with the
Dimple at Re = 103

Type of surface Cxp Cxf Cx

Smooth wall − 0.02514 0.02514

Spherical dimple 0.00469 0.01743 0.02212

Asymmetric dimple 0.00445 0.01762 0.02207

Asymmetric dimple with  ε = 0.2 0.00388 0.01756 0.02144
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comes larger and larger, and the interface between the streams rises over the plane. A tendency toward
equalization of pressure in the cross section of the dimple is noted.

And, finally, we will compare the tabulated integral force characteristics that influence the circular
element of a smooth wall of unit radius in the presence and absence of a dimple. It is important to emphasize
that the presence of a spherical dimple leads to a substantial, 30%, drop in the friction resistance Cxf. Of
course, a pressure resistance Cxp appears in this case that comes to about 19% of the resistance of the plane
element. Nevertheless, the total resistance of the circular element with the considered spherical dimple Cx

turns out to be approximately 11% lower than the friction resistance of the plane element. The use of asym-
metric dimples favors a decrease in the profile resistance and practically does not influence the friction resis-
tance. Thus, the total resistance of the circular element with an asymmetric dimple at ε = 0.2 can be reduced
by 15% in comparison with the case of a plane wall.

This work was carried out with financial support from the Russian Foundation for Basic Research,
project Nos. 00-02-81045, 99-01-00722, and 99-02-16745.
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